SUNDWIGER Messingwerk

High-Performance Alloys **SB02**

Material Designation			
DIN-EN Symbol	CuFe2P		
DIN-EN	CW107C		
UNS	C19400		
JIS	C1940		
The Miller Company	C194		

Physical Properties		
Electrical conductivity soft	36.5	MS/m
Thermal conductivity	260	W/(m·K)
Thermal expansion coefficient **	17	10-6/K
Density	8.9	g/cm³
Modulus of elasticity	123	GPa = kN/mm ²

- * Reference values at room temperature
- ** Between 20 and 300 °C

Nominal Composition (mass content in %)		
Cu	Balance	
Fe	2.4	
Zn	0.13	
Pb	< 0.005	
P	0.03	
Other	< 0.1	

Typical Applications

- Age-hardenable alloys for connectors and power transistor carriers and semiconductor devices
- Leaf springs for relays
- Stamped-bent parts
- Transistor carriers
- Connector pins
- Carriers
- · Car electrics

About The Alloy

Low-alloyed copper alloys are distinguished by a high electrical conductivity. They do not reach the spring force of the bronzes, however, in comparison with pure copper, they are significantly harder.

During the last decade SB02 (UNS C19400) has gained importance for lead frames because of the high electrical conductivity and the favourable price and in the meantime it has become the copper alloy with the world-wide most frequent use for this application. Due to the necessary miniaturisation of components and the increased packing density involved, materials with high conductivity gain importance.

Therefore, for some time SB02 is also used in electric and electronic automotive applications for special connectors and for the central fuse, relay and terminal box.

The alloy is registered with the U.S. EPA as Antimicrobial and with respect to Pb and Cd meets the OEKO-TEX Standard 100.

Mechanical Properties *)							
Temper condition		O R 300 H 80	H01 R 340 H 100	H02 R 370 H 110	H04 R 415 H 125	H08 R 480 H 140	H10 R 530 H 150
Tensile strength in N/mm ²		300 - 340	340 - 390	370 - 430	415 - 480	480 - 525	530 - 570
0.2 % yield Strength in N/mm²		< 240	240	330	380	440	470
Elongation A _{L50} %		> 20	> 10	> 6	>4	>3	> 3
Vickers hardness HV		80 - 100	100 - 120	110 - 140	125 - 145	140 - 160	150 - 170
Electrical conductivity in % IACS		63	62	60	60	60	60
Minimum radius of the bending mandrel for 90° bend and strip thickness s, tempered quality							
0.10 ≤ s ≤ 0.25 mm	transverse parallel	0 x s 0 x s	0 x s 0 x s	0 x s 0 x s	0.5 x s 0.5 x s	0.5 x s 1 x s	1 x s 1.5 x s
0.25 < s ≤ 0.5 mm	transverse parallel	0 x s 0 x s	0 x s 0 x s	0 x s 0 x s	1 x s 1 x s	1 x s 2 x s	1.5 x s 3 x s
*) Reference values							

SUNDWIGER Messingwerk

High-Performance Alloys

Processing Instructions		
Cold forming properties	very good	
Machinability	sufficient	
Electroplating properties	very good	
Hot-dip tinning properties	very good	
Soldering	very good	
Resistance welding	good	
Gas shielded arc welding	good	
Laser welding	good	

Available Dimensions

Bright pre-rolled strips 1 to 2.5 mm

Precision strip thickness from 0.05 to 1.2 mm

Strip width from 3.0 to 600 mm, but at least 10 times of the strip thickness

Other widths available on request.

Available Versions

Coils with standard outer diameters of 1200 mm

Strips in reel form with coil weight of up to 1500 kg

Multipancake up to 2.5 t

Hot-dip tinned strips

Profiled strips

Electroplated strips (tin, nickel)

Your Local Contact Person

Europe USA Asia

SUNDWIGER Messingwerk

Sundwiger Messingwerk GmbH

Hönnetalstraße 110 58675 Hemer Germany Phone +49 2372 661-0 Fax +49 2372 661-259 E-Mail: sales-sundwig@sundwiger-

www.sundwiger-mw.com

Miler

The Miller Company

275 Pratt Street CT 06450 Meriden USA Phone +1 203 63969-02 Fax +1 203 63969-24 E-Mail: sales@themillerco.com

www.sundwiger-mw.com

SUNDWIGER

Messingwerk

Diehl Metall (Shenzhen) Co. Ltd.

Block 25 Shatoujiao Free Trade Zone 518081 Shenzhen - P.R. China Phone +86 755 25261454-0

Fax +86 755 25260974

E-Mail: sales@sundwiger-mw.com.cn

www.sundwiger-mw.com

The information given in this material data sheet, which in any case provides no guarantee of particular characteristics, has been compiled to the best of our knowledge but is given without any obligation on our part. Our liability is determined solely by the individual contract terms, in particular by our general conditions of sale.

We reserve the right to make alterations especially where necessitated by technical developments or changes in availability. Please ask for the latest edition of this material data sheet.