

NB17 – CuNi18Zn27

Material Designation		
DIN-EN Symbol	CuNi18Zn27	
DIN-EN	CW410J	
UNS	C77000	
JIS	C7701	

Physical Properties		
Electrical conductivity soft	3	MS/m
Thermal conductivity	27	W/(m·K)
Thermal expansion coefficient **	17	10-6/K
Density	8,8	g/cm³
Modulus of elasticity	135	GPa = kN/mm²

^{*} Reference values at room temperature

Nominal Cor	nposition
(mass conte	nt in %)

Cu	Balance
Ni	18
Zn	27
Fe	< 0,2
Mn	< 0,5
Pb	< 0,01
Other	< 0,1

Typical Applications

- · Coins
- Caps for quartz crystals
- Electromagnetic shieldings
- Deep drawing parts
- . Tableware
- Security keys
- Cutlery
- Contact springs
- Connector
- · Leaf springs for relays
- Electric contacts

About The Alloy

NB17 is a nickel silver alloy containing 18 % nickel and 27 % zinc.

The alloy has good cold-forming properties, is tarnish resistant and has particularly good spring properties.

Like all copper alloys the copper-nickelzinc alloys are not susceptible to embrittlement at lower temperature. The corrosion

resistance of nickel silver is considerably better than that of binary copper-zinc alloys.

NB17 is insensitive to stress corrosion cracking. NB17 is used for contact springs in relays, EMI shieldings and jewelry.

Mechanical Properties *)							
Temper condition		O R 390 H 90	H01 R 470 H 120	H02 R 540 H 170	H04 R 600 H 190	H06 R 700 H 220	H08 R 760 H 230
Tensile strength in N/mn	n²	390 - 470	470 - 540	540 - 630	600 - 700	700 - 800	760 - 850
0.2 % yield Strength in N	J/mm²	280	280	450	550	650	700
Elongation A _{L50} %		> 33	> 11	> 5	> 2	> 1	-
Vickers hardness HV		90 - 120	135 - 180	170 - 200	190 - 220	220 - 250	230 - 260
Electrical conductivity in	% IACS	5	4	4	4	4	4
Minimum radius of the bending mandrel for 90° bend and strip thickness s							
0.10 ≤ s ≤ 0.25 mm	transverse parallel	0 x s 0 x s	0 x s 0 x s	0 x s 0 x s	0 x s 0 x s	0 x s 1 x s	-
0.25 < s ≤ 1.0 mm	transverse parallel	0 x s 0 x s	0 x s 0 x s	0 x s 0 x s	0 x s 1 x s	2 x s 5 x s	-
*) Reference values							

The information given in this material data sheet, which in any case provides no guarantee of particular characteristics, has been compiled to the best of our knowledge but is given without any obligation on our part. Our liability is determined solely by the individual contract terms, in particular by our general conditions of sale. We reserve the right to make alterations especially where necessitated by technical developments or changes in availability. Please ask for the latest edition of this material data sheet.

^{**} Between 20 and 300 °C

NB17 - CuNi18Zn27

Processing Instructions	
Cold forming properties	very good
Machinability	satisfactory
Electroplating properties	very good
Hot-dip tinning properties	satisfactory
Soldering	satisfactory
Resistance welding	very good
Gas shielded arc welding	good
Laser welding	good

Available Versions
Coils with standard outer diameters of 1200 mm
Strips in reel form with coil weight of up to 1500 kg
Multipancake up to 2.5 t
Hot-dip tinned strips
Profiled strips
Electroplated strips (tin, nickel)

Available Dimensions

Bright pre-rolled strips 1 to 2.5 mm

Precision strip thickness from 0.05 to 1.2 mm

Strip width from 3.0 to 600 mm, but at least 10 times of the strip thickness

Other widths available on request

Your Local Contact Person	
Europe	Asia

SUNDWIGERMessingwerk

Sundwiger Messingwerk GmbH

Sundwiger Metal (Shenzhen) Co. Ltd.

Hönnetalstraße 110 58675 Hemer Deutschland Tel. +49 2372 661-100

Fax +49 2372 661-48100

E-Mail: sales-sundwig@sundwiger-

mw.com

www.sundwiger-mw.com

5F, Block 25, Shatoujiao Free Trade Zone

518081 Shenzhen P.R. of China

Tel. +86 755 2235 7466 Fax +86 755 25260974

E-Mail: sales@sundwiger-mw.com.cn

www.sundwiger-mw.com

The information given in this material data sheet, which in any case provides no guarantee of particular characteristics, has been compiled to the best of our knowledge but is given without any obligation on our part. Our liability is determined solely by the individual contract terms, in particular by our general conditions of sale. We reserve the right to make alterations especially where necessitated by technical developments or changes in availability. Please ask for the latest edition of this material data sheet.